

Summary of 2024 Awards

Research Corporation for Science Advancement supports early career scientists at colleges and universities in the United States and Canada through three programs: the Cottrell Scholar Program, Scialog, and the RCSA Fellows Initiative. RCSA makes financial awards through the Cottrell Scholar Program and Scialog.

The Cottrell Scholar Program develops outstanding teacher-scholars recognized by their scientific communities for the quality of their research programs, innovation in education, and potential for academic leadership. In 2024, Cottrell Scholar Program funding included \$2,280,000 for 19 initial Cottrell Scholar Awards, \$75,000 for Cottrell Scholars Collaborative Awards, and \$675,000 for Cottrell Plus Awards, which include the competitive SEED, STAR, and IMPACT awards. The second year of our Holland Awards welcomed four senior scholars to the Cottrell Scholar Community with awards totaling \$20,000. One Cottrell Scholar received \$5,000 to fund a regional meeting. 2024 total: \$3,055,000

Scialog, celebrating its 15th year in 2024, promotes dialogue and community-building to catalyze transformational science through collaborative, interdisciplinary research. In 2024, RCSA awarded \$1,587,000 to early career scientists for research through Scialog Collaborative Innovation Awards. Partner philanthropies — which in 2024 included the Arnold and Mabel Beckman Foundation, the Brinson Foundation, the Frederick Gardner Cottrell Foundation, the Heising-Simons Foundation, the Alfred P. Sloan Foundation, the Kavli Foundation, the Leinweber Foundation, the Walder Foundation, and independent donor Kevin Wells — contributed a further \$3,187,000 toward Scialog awards. 2024 total: \$4,774,000

The RCSA Fellows Initiative named eight postdoctoral scholars as RCSA Fellows in the first year of this effort to increase faculty excellence in the physical sciences through job search preparation and community building.

Cottrell Scholar Program

Nurturing an interdisciplinary community of outstanding teacher-scholars, the CS program fosters synergy among faculty at major research universities and primarily undergraduate institutions in the United States and Canada. Cottrell Scholars receive an initial award of \$120,000, engage in an annual networking event to share insights and expertise, and have the opportunity to develop initiatives to enhance science education and scientist career development through the Cottrell Scholars Collaborative. Outstanding candidates in chemistry, physics, and astronomy are admitted to the ranks of Cottrell Scholars through a stringent peer-review process based on their innovative research and education proposals. Once designated a Cottrell Scholar, several levels of competitive funding to promote career growth become available through Cottrell Plus Awards.

2024 Cottrell Scholar Awards

Carlos Argüelles Delgado, Physics, Harvard University Searching for New Physics with Galactic Neutrinos

Bernadette Broderick, Chemistry, University of Missouri

A New Tool to Probe Condensed-Phase Chemistry: Rotational Spectroscopy
of Buffer-Gas Cooled Molecules Desorbed from an Ice Surface

Lía Corrales, Astronomy, University of Michigan

Unveiling Cosmic Treasures: Exploring the Secrets of Astromineralogy with X-Ray Imaging Spectroscopy

Katherine de Kleer, Astronomy, California Institute of Technology *Planetesimal Interiors: Searching for Evidence of Core Material*

Meagan Elinski, Chemistry, Hope College Chemical-Mechanical Control over Nanoparticle-Hydrogel Sliding Interfaces Jacob Gayles, Physics, University of South Florida

Strain Manipulation of Charge and Spin Dynamics in 2D Magnets

Leslie Hamachi, Chemistry, California Polytechnic State University, San Luis Obispo Colloidal Stabilization of Covalent Organic Frameworks with Acid-Base Chemistry and STEM Educator Training

Farnaz Heidar-Zadeh, Chemistry, Queen's University

Combining Quantum Chemistry Concepts and Machine Learning for Drug Discovery

Tova Holmes, Physics, University of Tennessee, Knoxville

Next Generation Beams: Exploring the Potential of Muon Acceleration

Fang Liu, Chemistry, Emory University

Machine Learning Aided Quantum Chemistry Discovery in the Solution Phase

Anne Medling, Astronomy, University of Toledo Doing Our Homework: Direct Tests of Black Hole Accretion Rate Prescriptions

Maren Mossman, Physics, University of San Diego Cloud-Based Investigations of Quantum Hydrodynamics in Ultracold Atomic Gases

Johanna Nagy, Physics, Case Western Reserve University

Measuring Cosmic Birefringence in the Presence of Galactic Foregrounds and Improving Career

Preparation through Advanced Physics Labs

Denise Okafor, Chemistry, Pennsylvania State University

Allostery and Architecture: Building and Validating Functional Models of Multidomain Receptors

Rebecca Rapf, Chemistry, Trinity University

Interface-Induced Changes to Electronic Structure and Reactivity of Environmentally
Relevant Polycyclic Aromatic Species

Paul Robustelli, Chemistry, Dartmouth College Characterizing and Modulating Interactions of Disordered Proteins that Drive Biomolecular Condensate Formation and Cytotoxic Aggregation

Timothy Su, Chemistry, University of California, Riverside Skeletal Editing of Silicon Nanostructures & Student-Created Social Media Videos to Close the Achievement Gap

Jessica Swanson, Chemistry, University of Utah

Probing the Role of Membranes in Bacterial Methane Oxidation with Multiscale Simulations

Michael Welsh, Chemistry, Hamilton College Characterization of Enzymes that Build and Degrade Spore Cortex Peptidoglycan

Cottrell Scholars Collaborative

At the annual Cottrell Scholar Conference, participants are encouraged to form teams and develop collaborative projects with potential national impact in science education. Through the Cottrell Scholars Collaborative program, RCSA gave awards of \$25,000 each to three projects in 2024.

Cottrell Lectureships: Seeding Speaker-Sharing Between R1s and Local PUIs

Science departments at predominantly undergraduate institutions often have difficulty recruiting speakers for academic colloquia due to budgetary constraints, while research universities may have larger budgets that allow them to recruit speakers from around the country and the world. This project aims to create speaker-sharing partnerships between R1s and smaller nearby colleges where speakers would visit several institutions in one trip, reducing the carbon impact of travel, enriching academic life at smaller colleges, and seeding relationships between faculty at close-by institutions that could lead the way to future partnerships.

Lead Cottrell Scholar: Matthew Caplan, Physics, Illinois State University
In collaboration with additional Cottrell Scholars:
Graham Giovanetti, Physics, Williams College
Leslie Hamachi, Chemistry, California Polytechnic State University, San Luis Obispo Timothy Su, Chemistry, University of California, Riverside
Lisa Szczepura, Chemistry, Illinois State University
Sergei Urazhdin, Physics, Emory University
Rory Waterman, Chemistry, University of Vermont

AI Research Coach - Cottrell Scholars Collaborative (ARC-CSC): Partnering with AI to Scale Up Access to Research Experience for Science Majors

Undergraduates interested in science need significant independent research experience before applying to graduate or professional schools, but early career faculty are often short on time to reliably train and mentor them. This project aims to teach and equip an existing Large Language Model to coach students through early opportunities for open-ended problem solving and basic research experiences. After training with the coach, promising students would then transition to higher-touch supervision by a PI to begin contributing to a lab or research group.

Lead Cottrell Scholar: Vera Gluscevic, Astronomy, University of Southern California
In collaboration with additional Cottrell Scholars:
Carlos Argüelles Delgado, Physics, Harvard University
Darcy Barron, Physics, University of New Mexico
Rachel Bezanson, Astronomy, University of Pittsburgh
Lia Corrales, Astronomy, University of Michigan
Daniela Fera, Chemistry, Swarthmore College
Jonathan Foley, Chemistry, University of North Carolina at Charlotte
Farnaz Heidar-Zadeh, Chemistry, Queen's University

Tova Holmes, Physics & Astronomy, University of Tennessee, Knoxville Johanna Nagy, Physics, Case Western Reserve University William Pfalzgraff, Chemistry, Chatham University Chad Risko, Chemistry, University of Kentucky Eduardo Rozo, Physics, University of Arizona Ryan Trainor, Astronomy, Franklin & Marshall College

CottreLLM: Leveraging Artificial Intelligence to Enhance Student Learning in Computational Science Courses

Advances in general Large Language Models create new opportunities to integrate programming and
computation into chemistry, physics, and astronomy classes. While these efforts can lower barriers to entry and
broaden participation in STEM education, the technology is changing so rapidly it remains unknown how
educators should best leverage LLMs as coding assistants in their courses to advance student learning and
success. This project will create "how-to" materials to guide instructors and develop an initial set of guidelines
that can be assessed and refined in coordination with education researchers.

Lead Cottrell Scholar: Jonathan Foley, Chemistry, University of North Carolina at Charlotte In collaboration with additional Cottrell Scholars: Carlos Argüelles Delgado, Physics, Harvard University Timothy Atherton, Physics, Tufts University Lia Corrales, Astronomy, University of Michigan Meagan Elinski, Chemistry, Hope College Vera Gluscevic, Astronomy, University of Southern California Farnaz Heidar-Zadeh, Chemistry, Queen's University Rigoberto Hernandez, Chemistry, Johns Hopkins University Tova Holmes, Physics & Astronomy, University of Tennessee, Knoxville Geoffrey Hutchison, Chemistry, University of Pittsburgh William Pfalzgraff, Chemistry, Chatham University Davit Potoyan, Chemistry, Iowa State University Grace Stokes, Chemistry, Santa Clara University David Strubbe, Physics, University of California, Merced Ryan Trainor, Astronomy, Franklin & Marshall College

Christina Vizcarra, Chemistry, Barnard College

Cottrell Plus Awards

SEED

SEED (Singular Exceptional Endeavors of Discovery) Awards are competitive grants of \$60,000 each to launch new projects. In 2024, RCSA expanded SEED Awards to include two categories: New Research Directions, and Exceptional Opportunities. New Research Directions awards, for innovative research projects with potential to lead to a transformative line of inquiry, were open to Cottrell Scholars and Holland Award recipients from research universities and primarily undergraduate institutions. Exceptional Opportunities awards, to advance existing research projects at primarily undergraduate institutions to higher levels of innovation and impact, were open to Cottrell Scholars and Holland awardees at non-doctoral departments. In 2024, eleven SEED Award winners each received \$60,000.

SEED Awards for New Research Directions:

Erin Carlson, CS 2012, University of Minnesota Twin Cities Eradication of Bacterial Resistance Mechanisms

Bert Chandler, CS 2001, Pennsylvania State University
Beating Thermodynamics: Understanding How Spillover Protons Weaken CO₂ Binding in Carbon Capture Materials

Robert Gilliard, HOL 2023, Massachusetts Institute of Technology Transition Metal-Free Reactivity of Redox-Activated Carbon Dioxide

Darren Johnson, CS 2006, University of Oregon Supramolecular Capture and Release of PFAS: SEEDing the Center for Aqueous Supramolecular Chemistry

Ognjen Š. Miljanić, CS 2013, University of Houston Putting Water to Work: Binding of Methane Hydrates in Cyclobenzoin Supramolecular Hosts Jill Millstone, CS 2015, University of Pittsburgh

Using Photocatalytic Reduction to Isolate and Study Intermediates in Nanoparticle Formation Reactions

Eric Schelter, CS 2013, University of Pennsylvania

New Directions for Sustainable Separations of Battery Materials

SEED Awards for Exceptional Opportunities:

Paulo Almeida, CS 2005, University of North Carolina, Wilmington *Quantitative Approach to Peptide-Lipid Interactions in Membranes*

Aaron Leconte, CS 2016, Scripps College

Towards XNA PCR: Evaluating the Potential of Fusion Domains to Improve XNA Polymerases

George Shields, CS 1994, Furman University

Peptide Formation in Nanoclusters of Water in the Prebiotic Atmosphere

Adam Urbach, CS 2005, Trinity University

Order from Disorder: Programmable Induction of Polypeptide Folding with Synthetic Receptors

STAR & IMPACT

STAR (Science Teaching And Research) Awards recognize the outstanding research and educational accomplishments of Cottrell Scholars and encourage the improvement of science education at American and Canadian universities and colleges. IMPACT Awards recognize the work of Cottrell Scholars who have had a national impact in science through their leadership and service activities.

In 2024, the STAR Award of \$5,000 went to Mark Moldwin, CS 1997, University of Michigan. IMPACT awards of \$5,000 went to Maura McLaughlin, CS 2009, West Virginia University, and Rory Waterman, CS 2009, University of Vermont.

Holland Awards

Four senior scientists with impressive records of scholarship, leadership, and impact received **Robert Holland Jr. Awards** for Research Excellence and Contributions to Diversity, Equity and Inclusion. The awards welcome recipients as full members of the Cottrell Scholar community and come with a \$5,000 cash prize.

Marcel Agüeros, Astronomy, Columbia University Jorge López, Physics, University of Texas, El Paso Nadya Mason, Physics, University of Chicago Leyte Winfield, Chemistry, Spelman College

Cottrell Scholar Regional Meetings

RCSA makes funds available to Cottrell Scholars who wish to host one-day regional meetings at their institutions to discuss research, teaching, and career development. In 2024, RCSA awarded \$5,000 for one regional meeting.

Rae Robertson-Anderson, Physics, University of San Diego Soft Matter at USD

RCSA Fellows Initiative

The RCSA Fellows Initiative aims to advance the scientific enterprise in the United States and Canada by building and strengthening an engaged community of faculty who bring a variety of perspectives, experiences, and backgrounds to teaching and research in the physical sciences. The initiative makes no financial awards but supports the career advancement of each cohort through job-search preparation and community building. This includes pairing participants with host institutions for mock interviews with structured feedback, and through participation in annual conferences that help build a supportive, cross-disciplinary professional network Fellows can rely on throughout and beyond the multi-year cycle of the program.

In the initiative's first year, RCSA named eight postdoctoral scholars as RCSA Fellows:

Carlos Blanco, Physics, Princeton University
Sarah Blunt, Astronomy, Northwestern University
Michelle Brann, Chemistry, Harvard University
Catherine Denning-Jannace, Chemistry, Duke University
Philipp Gemmel, Chemistry, University of Michigan
Said Jalife Jacobo, Chemistry, University of Houston
William Ndugire, Chemistry, University of Massachusetts Amherst
Eugenia Vasileiadou, Chemistry, University of California, Los Angeles

Scialog Collaborative Innovation Awards

The Scialog program was created in 2010 by RCSA, which oversees its administration. Scialog — short for "science + dialog" — funds early career scientists to pursue transformative research with their fellow grantees on crucial issues of scientific inquiry. Scialog initiatives are a multi-year thematic investment, in which around 50 early career Scialog Fellows, facilitated by a group of leading scientists, convene annually to discuss cutting-edge multidisciplinary themes and propose high-risk collaborative projects. Through Scialog Collaborative Innovation Awards, RCSA along with its funding partners provided a total of \$4,774,000 in seed funding for collaborative team projects. In 2024, individual awards were \$50,000 each in direct costs for Molecular Basis of Cognition (Year 3) and \$60,000 for the remaining initiatives in Year 1.

Automating Chemical Laboratories (Year 1)

Goal: Catalyze collaborative projects that use artificial intelligence, machine learning, laboratory robotics, high-throughput synthesis, and automated analytical workflows to drive discovery, open access, and transform the way chemical laboratories operate.

Calibration-Free Quantitation of Reaction Yields in High-Throughput Reaction Screening through Absolute Carbon Quantification by LC-FID

James Grinias, Chemistry & Biochemistry, Rowan University

Connor Coley, Chemical Engineering & Electrical Engineering and Computer Science, Massachusetts

Institute of Technology

Jessica Sampson, Chemistry and Biochemistry, University of Delaware

Getting on the Grid: Parallel Nano-Crystallography for Large-Scale Data Generation Michael McGuirk, Chemistry, Colorado School of Mines Andrea Pickel, Mechanical Engineering, University of Rochester

Automated Workflows to Assess Physical Constraints in Neural Networks for Molecular Property Prediction

Grant Rotskoff, Chemistry, Stanford University

Aditi Krishnapriyan, Chemical Engineering / Computer Science, University of California, Berkeley **Andrew Zahrt**, Chemistry, University of Pennsylvania

Reducing the Cost of Device Development with Closed-Loop Proxy Measurements and Supplemental Characterization

Martin Seifrid, Materials Science and Engineering, North Carolina State University Cory Simon, Chemical Engineering, Oregon State University Connor Bischak, Chemistry, University of Utah

Closed-Loop Hypothesis Generation for Automated Chemical Synthesis Jolene Reid, Chemistry, University of British Columbia Yu Gan, Biomedical Engineering, Stevens Institute of Technology

Structure Identification in Complex Chemical Mixtures Using Boltzmann Spectroscopy

Daniel Schwalbe-Koda, Materials Science and Engineering, University of California, Los Angeles

Gabe Gomes, Chemistry / Chemical Engineering, Carnegie Mellon University

Jeffrey Lopez, Chemical and Biological Engineering, Northwestern University

A Data-Driven Approach for Derisking Chemical Synthesis

Laura Ackerman-Biegasiewicz, Chemistry, Emory University

Gabe Gomes, Chemistry / Chemical Engineering, Carnegie Mellon University

Sustainable Minerals, Metals, and Materials (Year 1)

Goal: Catalyze collaborative, cross-disciplinary projects to investigate how to design, manufacture, and recycle substances so that their use and production at scale is more compatible with ethical stewardship of our environment and decarbonizing the energy system.

Seaweed for Critical Element Extraction and Transformation (Sea-CrEET)
Nicholas Rolston, Electrical, Computer, and Energy Engineering, Arizona State University ²
Loretta Roberson, Bell Center, Marine Biological Laboratory ²
Julian West, Chemistry, Rice University ²

Engineering Plants and Algae as Dye-Free Alternatives to Fossil-Based Textiles

Helen Zha, Chemical and Biological Engineering, Rensselaer Polytechnic Institute ³

Loretta Roberson, Bell Center, Marine Biological Laboratory ³

Jaime Barros-Rios, Plant Science and Technology, University of Missouri ¹

Synergistic Photomechanical Depolymerization
Junsoo Kim, Mechanical Engineering, Northwestern University ¹
Grace Han, Chemistry, Brandeis University ¹
Lucas Bao, Chemistry, Boston College ¹

Electrocatalyst Formation from Extracted Critical Trace Elements in Copper Ores (EFFECT ECO) Nicholas Rolston, Electrical, Computer, and Energy Engineering, Arizona State University ² Agnes Thorarinsdottir, Chemistry, University of Rochester ² Isabel Barton, Mining & Geological Engineering, University of Arizona ²

AI/ML-assisted Separation and Programmable Electrodeposition of Ni and Co Jihye Kim, Metallurgical and Materials Engineering, Colorado School of Mines ² Shuwen Yue, Chemical Engineering, Cornell University ² Qi (Tony) Dong, Chemistry, Purdue University ² Water-Free Silicate Activation for Valuable Metal Extraction
Erika La Plante, Materials Science and Engineering, University of California, Davis ²
Matthew Nava, Chemistry and Biochemistry, University of California, Los Angeles ¹
Oscar Nordness, Earth and Environmental Engineering, Columbia University ¹

Co-Developing Advanced Catalysts and Engineered Microbes to Upcycle Mixed, Low-Value Plastic Waste into High-Value Recombinant Products

Helen Zha, Chemical and Biological Engineering, Rensselaer Polytechnic Institute ¹ **Julie Rorrer**, Chemical Engineering, University of Washington ¹

Funded by RCSA ¹ Funded by The Alfred P. Sloan Foundation ² Funded by The Kavli Foundation ³

Molecular Basis of Cognition (Year 3)

Goal: Catalyze teams of researchers working across disciplines, including neurobiology, neuroscience, and related cognitive sciences, to devise new ways to probe the chemistry, biology, physics, and computational science that underlie memory and other cognitive processes.

A Presence of Departed Acts: Understanding Multisensory Interference and Working Memory Capacity with Focus on Olfactory Interactions

Ann-Sophie Barwich, History and Philosophy of Science and Medicine / Cognitive Science, Indiana University Bloomington

Wilma Bainbridge, Psychology, University of Chicago

The (Im)Mutability of Emotional-Motivational Modularity: Neurofeedback for the Reorganization of Valence

Kurt Fraser, Psychology, University of California, Berkeley **Nicole Ferrara**, Physiology and Biophysics, Rosalind Franklin University **Jonathan Fadok**, Psychology, Tulane University Rewiring Genome in 3D to Enhance Cognition after Sleep Deprivation across Species Farzaneh Najafi, Biological Sciences, Georgia Institute of Technology Longzhi Tan, Neurobiology, Stanford University Masashi Tabuchi, Neurosciences, Case Western Reserve University School of Medicine

Understanding the Neural Basis of Natural Behavior with Individualized RNNs Marcelo Mattar, Psychology, New York University
Matthew Lovett-Barron, Neurobiology, University of California, San Diego
Antonio Fernandez-Ruiz, Neurobiology & Behavior, Cornell University

From Spikes to Neuromodulation: Uncertainty Coding in Rodents and Primates Farzaneh Najafi, Biological Sciences, Georgia Institute of Technology Ritchie Chen, Neurological Surgery, University of California, San Francisco Anita Disney, Neurobiology, Duke University

Unraveling Epigenomic & Epitranscriptomic Mechanisms of Prenatal Stress: Sex Differences in Social Deficits across Generations

Monsheel Sodhi, Molecular Pharmacology and Neuroscience, Loyola University Longzhi Tan, Neurobiology, Stanford University

Early Science with the LSST (Year 1)

Goal: Advance the foundational science needed to realize the full potential of the Vera C. Rubin Observatory's upcoming Legacy Survey of Space and Time.

IMBH in the LMC? A Hypervelocity Star Survey with LSST
Wenbin Lu, Astronomy, University of California, Berkeley
Ana Bonaca, Carnegie Observatories, Carnegie Institution for Science
Kareem El-Badry, Astronomy, California Institute of Technology

Not So Heavy Metal: An Enhanced Rate of SLSNe at Cosmic Noon
Allison Strom, Physics and Astronomy, Northwestern University
Ben Margalit, Physics and Astronomy, University of Minnesota Twin Cities
Adam Miller, Physics and Astronomy, Northwestern University

White Dwarf Companions as Brown Dwarf Chronometers
Kareem El-Badry, Astronomy, California Institute of Technology
Caroline Morley, Astronomy, University of Texas at Austin

Rubin LSST as a Multi-Wavelength Discovery Engine for Relativistic Transients

Igor Andreoni, Physics and Astronomy, University of North Carolina at Chapel Hill

Tanmoy Laskar, Physics & Astronomy, University of Utah

Mathew Madhavacheril, Physics and Astronomy, University of Pennsylvania

A Unified Model of Stellar Systems in LSST-Y1 for Dark Matter Inference Alexander Ji, Astronomy & Astrophysics, University of Chicago Vera Gluscevic, Physics and Astronomy, University of Southern California

Multimessenger Transients in AGN Disks

Anna Ho, Astronomy, Cornell University

Maya Fishbach, Canadian Institute for Theoretical Astrophysics, University of Toronto

Elisabeth Newton, Physics and Astronomy, Dartmouth College

Dwarf Debris and Dark Matter: Searching for Evidence of Hierarchical Formation in the Stellar Halos of Dwarf Galaxies

Charlotte Christensen, Physics, Grinnell College

Nora Shipp, Astronomy, University of Washington

Burçin Mutlu-Pakdil, Physics and Astronomy, Dartmouth College

Towards a Census of Dual AGN Across Cosmic Time Krista Smith, Physics and Astronomy, Texas A&M University Adi Foord, Physics, University of Maryland, Baltimore County

About RCSA

Research Corporation for Science Advancement was founded in 1912 and is the second-oldest foundation in the United States (after the Carnegie Corporation) and the oldest foundation for science advancement. RCSA seeks to advance early stage, high-potential, basic scientific research by creating and supporting communities of early career researchers in the physical sciences and closely related fields at colleges and universities across the United States and Canada.

RCSA has seven conferences scheduled for 2025 in Tucson, Arizona.

March 13-16 — Neurobiology and Changing Ecosystems

April 3-6 — Automating Chemical Laboratories

June 3-4 — RCSA Fellows Conference

July 16-18 — Cottrell Scholar Conference

Sept. 10-13 — Scialog: Sustainable Minerals, Metals, and Materials

Oct. 16-19 — Scialog: Quantum Matter and Information

Nov. 13-16 — Scialog: Early Science with the LSST

Recommendations for early career faculty to participate in Scialog meetings as Fellows, or senior faculty to serve as Scialog Facilitators, are welcome from colleagues, department heads, deans, vice presidents for research, or provosts. Institutions should also encourage eligible faculty (those in their third year with budgetary or courtesy appointments in chemistry, physics, or astronomy) to apply for the Cottrell Scholar Award. Members of the RCSA community who are Cottrell Scholars, Holland Awardees, or Scialog Fellows or Facilitators are encouraged to learn more about how they can participate in the RCSA Fellows Initiative.

To learn more about RCSA and its programs, visit **rescorp.org** or contact:

Senior Program Director Silvia Ronco — sronco@rescorp.org
Senior Program Director Richard Wiener — rwiener@rescorp.org
Senior Program Director Andrew Feig — afeig@rescorp.org
Program Director Eileen Spain — espain@rescorp.org
RCSA President & CEO Daniel Linzer — dlinzer@rescorp.org